
 41

“floor x = @n.((& n) real_le x) /\ (!i.((& i) real_le x) ==> i <= n)”);;

The function rsign returns a 1 if its argument of type “:real ” is negative and 0 otherwise.

new_definition(`rsign`,
“rsign r = r real_lt &0 => 1 | 0”);;

6 References
[1] Geoff Barret. Formal Methods Applied to a Floating-Point Number System, IEEE Transactions on

Software Engineering, volume 15, number 5, May 1989, pages 611-621.

[2] M.J.C. Gordon. A Proof Generating System for Higher-Order Logic, in VLSI Specification, Verifi-
cation and Synthesis, G. Birtwistle and P.A. Subrahmanyam editors, Kluwer International Series
in Engineering and Computer Science, SECS35, 1988.

[3] Elsa Gunter. (Integer library in HOL system distribution) March 1989.

[4] John Harrison. The HOL Reals Library. University of Cambridge Computer Laboratory, July 1992.

[5] IEEE. IEEE Standard for Binary Floating-Point Arithmetic, 1985. ANSI/IEEE Std 754-1985.

[6] IEEE. IEEE Standard for Radix-Independent Floating-Point Arithmetic, 1987. ANSI/IEEE Std
854-1987.

[7] Paul Miner. Defining the IEEE-854 Floating-Point Standard in PVS, NASA Technical Memoran-
dum 110167, June 1995.

[8] Jing Pan. Formal Specification and Verification of a Floating-Point Coprocessor, Department of
Computer Science, University of California, Davis, September 1990.

40

new_definition(`LE`,
“LE fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => T, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => T, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => F, no_excep |
 F, invalid”);;

new_definition(`UN`,
“GT fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => F, no_excep |
 T, no_excep”);;

5.8 Supporting functions

This section includes some functions that are used within the definition of the IEEE-854 standard in
the HOL system, but are more of a general nature than specific to the standard.

The function “real_to_int_real r ” delivers the integer real number nearest “r”. If two such
numbers exist, “real_to_int_real ” delivers an even integer real number.

new_definition(`real_to_int_real`,
“real_to_int_real r = (
(r real_ge &0) =>
 (&
 (((&(ceiling r) real_sub r) real_lt (r real_sub &(floor r))) => ceiling r |
 ((r real_sub &(floor r)) real_lt (&(ceiling r) real_sub r)) => floor r |
 (@n.((n = ceiling r)\/(n = floor r))/\(EVEN n))))
 |
 let rn = abs r in
(real_neg (&
(((&(ceiling rn) real_sub rn) real_lt (rn real_sub &(floor rn))) => ceiling rn |
 ((rn real_sub &(floor rn)) real_lt (&(ceiling rn) real_sub rn)) => floor rn |
 (@n.((n = ceiling rn)\/(n = floor rn))/\(EVEN n)))))
)”);;

Logarithm base n of x is defined in terms of the natural logarithm provided in thereals library

new_definition(`log`,
“log n x = (ln x) real_mul (real_inv (ln (& n)))”);;

The ceiling function when applied to a number “x:real ” will return the least number “n:num ”
greater or equal tox. This function is only valid for non-negative values ofx. Whenx is negative ceiling of
x is zero.

new_definition(`ceiling`,
“ceiling x = @n.((& n) real_ge x) /\ (!i.((& i) real_ge x) ==> n <= i)”);;

The floor function when applied to a number “x:real ” will return the greatest “n:num ” less than or
equal tox. Floor is only valid for non-negative arguments. Whenx is negative floor ofx is an undefined
natural number.

new_definition(`floor`,

 39

(is_s_NaN fp1\/ is_s_NaN fp2) => unordered, invalid |
(is_q_NaN fp1\/ is_q_NaN fp2) => unordered, no_excep |
(is_infinite fp1/\is_infinite fp2/\(fp_sign fp1 = fp_sign fp2))
 => equal, no_excep |
(is_infinite fp1/\(fp_is_neg fp1) => less_than, no_excep |
(is_infinite fp1/\(fp_is_pos fp1) => greater_than, no_excep |
(is_infinite fp2/\(fp_is_neg fp2) => greater_than, no_excep |
(is_infinite fp2/\(fp_is_pos fp2) => less_than, no_excep |
(fp_value (finite fp1) p1) real_lt (fp_value (finite fp2) p2)
 => less_than, no_excep |
(fp_value (finite fp1) p1) = (fp_value (finite fp2) p2)
 => equal, no_excep |
 greater_than, no_excep “);;

If the comparison operation is defined in terms of predicates, the following HOL definitions list six
predicates that must be provided by the implementation and a seventh predicates which is desirable. The
predicates are defined in terms of the function “relation ”.

new_definition(`EQ`,
“EQ fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => T, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => F, no_excep |
 F, no_excep”);;

new_definition(`NE`,
“NE fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => T, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => T, no_excep |
 T, no_excep”);;

new_definition(`GT`,
“GT fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => T, no_excep |
 F, invalid”);;

new_definition(`GE`,
“GE fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => T, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => T, no_excep |
 F, invalid”);;

new_definition(`LT`,
“LT fp1 fp2 p1 p2 =
(FST (relation fp1 fp2 p1 p2) = less_than) => T, no_excep |
(FST (relation fp1 fp2 p1 p2) = equal) => F, no_excep |
(FST (relation fp1 fp2 p1 p2) = greater_than) => F, no_excep |
 F, invalid”);;

38

new_definition(`ds_value`,
“ds_value ds = @r.ds = (format r)”);;

The floating-point number corresponding to each of the decimal string elements is given by the function:

new_definition(`ds_fp_conv`,
“ds_fp_conv ds p cn traps mode tiny acc emax emin =
(ds = quiet_nan) => (NaN(quiet,cn)), no_excep |
(ds = signaling_nan) => (NaN(sign,cn)), no_excep |
(ds = nan) => (NaN(sign,cn)), no_excep |
(ds = unrecognizable) => (NaN(quiet,cn)), invalid |
(ds = nzero) => finite(1,INT 0,\n.0), no_excep |
(ds = pzero) => finite(0,INT 0,\n.0), no_excep |
(ds = zero) => finite(0,INT 0,\n.0), no_excep |
(ds = ninf) => infinite 1, no_excep |
(ds = pinf) => infinite 0, no_excep |
(ds = inf) => infinite 0, no_excep |
 round (ds_value ds) p traps mode tiny acc emax emin”);;

Floating-point to decimal string conversion maps floating-point numbers to the corresponding decimal
strings. Floating-point to decimal string conversion is defined in a relational style to permit more than one
decimal string for a given floating-point number. The predicate “fp_ds_conv ” take as arguments float-
ing-point “fp ”, floating-point precision “p” and decimal string “ds ”:

new_definition(`fp_ds_conv`,
“fp_ds_conv fp p ds =
(is_s_NaN fp) => ((ds=(signaling_nan,invalid))\/(ds=(nan,invalid))) |
(is_q_NaN fp) => ((ds=(quiet_nan,no_excep))\/(ds=(nan,no_excep))) |
(fp_is_zero fp/\fp_is_neg fp) => (ds = (nzero, no_excep)) |
(fp_is_zero fp) => ((ds=(pzero,no_excep))\/(ds=(zero,no_excep))) |
(is_infinite fp/\fp_is_neg fp) => (ds = (ninf, no_excep)) |
(is_infinite fp) => ((ds=(pinf,no_excep))\/(ds=(inf,no_excep))) |
 (ds = format (fp_value (i_finite fp) p),no_excep)”);;

5.7 Comparison

For any two arbitrary floating-point numbers, one and only one of the following relations must hold:
“less than”, “equal”, greater than”, or “unordered”. The four relations between floating-point numbers are
defined by the type:

define_type `relations` `relations = less_than | equal | greater_than |
unordered`;;

The comparison operation can be defined in two optional ways: 1) by returning one of the possible
four relations between the arguments; 2) by returning true or false on a given predicate. The first option is
specified by the function:

new_definition(`relation`,
“relation fp1 fp2 p1 p2 =

 37

let N = finite2int fp p mode in
fp_is_neg fp =>
 ((abs r = &(SND (REP_integer N))) => no_excep |
 inexact) |
 ((r = &(FST (REP_integer N))) => no_excep |
 inexact) “);;

Integer to floating point is accomplished by converting the integer number to a real number and using
the round function to obtain a floating-point number.

new_definition(`int_fp_conv`,
“int_fp_conv N p traps mode tiny acc emax emin =
let r = (NEG N => real_neg (&(SND (REP_integer N))) |
 &(FST (REP_integer N))) in
FST (round r p traps mode tiny acc emax emin)”);;

5.5 Conversion of Floating-point to Integral valued floating-point

Conversion of floating-point to an integer valued floating-point is defined by conversion of floating-
point to an integer and from integer back to floating point. This conversion leaves infinities and quiet NaNs
unchanged and generates an invalid exception for signaling NaNs.

new_definition (`fp_fp_int_conv`,
“fp_fp_int_conv fp p cn traps mode tiny acc emax emin =
(is_s_NaN fp) => (NaN(quiet,cn)), invalid |
(is_q_NaN fp) => fp, no_excep |
(is_infinite fp) => fp, no_excep |
(fp_is_zero fp) => fp, no_excep |
 ((exc3 fp p mode = no_excep) =>
 fp, no_excep |
 (int_fp_conv (finite2int fp p mode) p traps mode tiny acc emax emin),
 inexact)”);;

When the conversion from floating-point to integer is exact (exc3 = no_excep) the floating-point num-
ber already has an integral value and no conversion is necessary. When the conversion from floating-point
to integer is inexact conversion takes place and the inexact exception is raised.

5.6 Conversion between floating-point and decimal string

Decimal strings are strings of characters representing decimal numbers or a string of characters repre-
senting non-valued entities. A partial characterization of a decimal string is performed in HOL by defining
a new type:

define_type `decimal_string` `decimal_string = quiet_nan | signaling_nan |
nan | unrecognizable | nzero | pzero | zero | ninf | pinf | inf |
format real `;;

The elements “nzero ”, “ pzero ”, “ zero ”, and “format real ” represent values. The elements
“quiet_nan ”, “ signaling_nan ”, “ nan ”, “ unrecognizable ”, “ ninf ”, “ pinf ”, and “inf ”
represent non-valued decimal strings. Note that there exists an overlap in the representation of the value 0.
The value of a decimal string “format real ” is the argument “real” to the type constructor “format ”.

36

(is_s_NaN fp) => (NaN(quiet,cn),invalid) |
(is_q_NaN fp) => (fp,no_excep) |
(is_infinite fp) => (fp,no_excep) |
 (p1 < p2) => ((p_conv fp p1 p2),no_excep) |
 (p1 = p2) => (fp,no_excep) |
 round (fp_value (i_finite fp) p1) p2 traps mode tiny acc emax2 emin2”);;

5.4 Conversion between Floating-point and Integer

Floating-point to integer conversion is defined in HOL by converting finite floating-point numbers to
an integer number and converting infinities and NaNs to an unspecified integer number:

new_definition (`fp_int_conv`,
“fp_int_conv fp p mode =
(is_s_NaN fp) => ran_int, invalid |
(is_q_NaN fp) => ran_int, no_excep |
(is_infinite fp) => ran_int, no_excep |
(fp_is_zero fp) => INT 0, no_excep |
 finite2int fp p mode, exc3 fp p mode”);;

The unspecified integer number is:

new_definition (`ran_int`,
“ran_int = @N:integer.T”);;

The conversion of non-zero finite floating-point numbers (of type “:fp_num”) to integer numbers (of
type “:integer ”) is defined by:

new_definition (`finite2int`,
“finite2int fp p mode =
let r = abs(fp_value (i_finite fp) p) in
let n =
((mode = to_near) =>
 ((EVEN (floor r)) =>
 floor (&(ceiling (&2 real_mul r))/&2) |
 ceiling (&(floor (&2 real_mul r))/&2)) |
 (mode = to_pos_inf) =>
 ((fp_is_neg fp) =>
 floor r |
 ceiling r) |
 (mode = to_neg_inf) =>
 ((fp_is_neg fp) =>
 ceiling r |
 floor r) |
 floor r) in
fp_is_neg fp => neg (INT n) |
 INT n “);;

The function “exc3 ” defines the inexact exception flag for the floating-point to integer conversion:

new_definition (`exc3`,
“exc3 fp p mode =
let r = abs(fp_value (i_finite fp) p) in

 35

mines which of the operands will be returned by the arithmetic operaion. The arguments “p1” and “p2”
determine the operands’ precision and if normalization is needed. “pr ” is the number of significant digits

used in the rounding operation4. The destination precision is the largest of the two precisions, in accor-
dance with IEEE-854 standard requirements.

new_definition (`fp_arith`,
“fp_arith op fp1 fp2 p1 p2 pr cn sel traps mode tiny acc emax1 emax2 emin1

emin2 =
(\fp1c,fp2c,p,emax,emin.
((is_s_NaN fp1) \/ (is_s_NaN fp2)) => (NaN(quiet,cn),invalid) |
((is_q_NaN fp1) /\ (is_q_NaN fp2)) => ((sel => fp1 | fp2),no_excep) |
(is_q_NaN fp1) => (fp1,no_excep) |
(is_q_NaN fp2) => (fp2,no_excep) |
 (op = fpadd) => fp_add fp1c fp2c p pr cn traps mode tiny acc emax emin |
 (op = fpsub) => fp_sub fp1c fp2c p pr cn traps mode tiny acc emax emin |
 (op = fpmul) => fp_mul fp1c fp2c p pr cn traps mode tiny acc emax emin |
 (op = fpdiv) => fp_div fp1c fp2c p pr cn traps mode tiny acc emax emin |
 fp_rem fp1c fp2c p pr cn traps mode tiny acc emax emin)
 ((p1 = p2) => (fp1,fp2,p1,emax1,emin1) |
 (p1 < p2) => ((p_conv fp1 p1 p2),fp2,p2,emax2,emin2) |
 (fp1,(p_conv fp2 p2 p1),p1,emax1,emin1))”);;

5.2 Square root

The result is defined and is positive for all operands greater than zero, except that sqr of -0 is -0.

new_definition (`fp_sqr`,
“fp_sqr fp p pr cn traps mode tiny acc emax emin =
(is_s_NaN fp) => (NaN(quiet,cn),invalid) |
(is_q_NaN fp) => (fp,no_excep) |
((fp_is_neg fp) /\ ~(fp_is_zero fp)) => (NaN(quiet,cn),invalid) |
(is_infinite fp) => (infinite 0,no_excep) |
(fp_is_zero fp) => fp, no_excep |
(round (sqrt (fp_value (i_finite fp) p))
 pr traps mode tiny acc emax emin)”);;

5.3 Precision conversions

Conversion between floating-point numbers of all precisions shall be possible. When converting from
a lower to a higher precision the result will be exact. Conversion from a higher to lower precision may sig-
nal inexact.

new_definition (`fp_p_conv`,
“fp_p_conv fp p1 p2 cn traps mode tiny acc emax2 emin2 =

4. In most cases rounding precision is the precision of its destination. However, in systems where the result is always deliv-
ered to double or extended destinations, the user has the option of specifying a lower rounding precision than the destination preci-
sion. The result will be stored with the exponent range of the higher precision.

34

 => (NaN(quiet,cn),invalid) |
((is_infinite fp1 \/ is_infinite fp2)/\
 (fp_sign fp1 = fp_sign fp2)) => (infinite 0,no_excep) |
((is_infinite fp1 \/ is_infinite fp2)/\
 ~(fp_sign fp1 = fp_sign fp2)) => (infinite 1,no_excep) |
(((fp_is_zero fp1)\/(fp_is_zero fp2))/\
(fp_sign fp1 = fp_sign fp2)) => (finite (0,INT 0,\n.0)),no_excep |
(((fp_is_zero fp1)\/(fp_is_zero fp2))/\
~(fp_sign fp1 = fp_sign fp2)) => (finite (1,INT 0,\n.0)),no_excep |
round ((fp_value (i_finite fp1) p) real_mul
 (fp_value (i_finite fp2) p)) pr traps mode tiny acc emax emin”);;

Floating-point division:

new_definition (`fp_div`,
“fp_div fp1 fp2 p pr cn traps mode tiny acc emax emin =
((fp_is_zero fp1 /\ fp_is_zero fp2)\/(is_infinite fp1 /\ is_infinite fp2))
 => (NaN(quiet,cn),invalid) |
((fp_is_zero fp2)/\
(fp_sign fp1 = fp_sign fp2)) => (infinite 0,div_by_zero) |
((fp_is_zero fp2)/\
~(fp_sign fp1 = fp_sign fp2)) => (infinite 1,div_by_zero) |
round ((fp_value (i_finite fp1) p) / (fp_value (i_finite fp2) p)) pr
 traps mode tiny acc emax emin”);;

Floating-point remainder is defined by IEEE-854 as follows:

When , the reminder is defined regardless of the rounding mode by the mathematical
relation , where n is the integer nearest the exact value x/y; whenever , then n
is even. If , its sign shall be that of x. [6, section 5.1, page 10]

The remainder function is defined in HOL by:

new_definition (`fp_rem`,
“fp_rem fpx fpy p (pr:num) cn traps (mode:round_m) tiny acc emax emin =
(is_infinite fpx \/ fp_is_zero fpy) => (NaN(quiet,cn),invalid) |
(is_infinite fpy) => (fpx,no_excep) |
 (let r = (fp_value (i_finite fpx) p real_sub
 ((fp_value (i_finite fpy) p real_mul
 (real_to_int_real
 ((fp_value (i_finite fpx) p) / (fp_value (i_finite fpy) p))))))
 in
 (r = &0) =>
 (finite (fp_sign_d fpx,INT 0,\n.0)),no_excep |
 round r p traps to_near tiny acc emax emin)”);;

The integer nearest the exact value is obtained using the function “real_to_int_real ”.
The function “real_to_int_real ”, defined in section 5.8, takes a real number and returns the nearest
real number with integer value.

 “fp_arith ” is the executive arithmetic function which filters NaN operands, normalizes the oper-
ands, and selects the arithmetic operation. When both operands are quiet NaNs the argument “sel ” deter-

y 0≠ r x REM y=

r x y n⋅–= n x y⁄– 1 2⁄=

r 0=

n x y⁄

 33

“p_conv ” converts a fp from a lower precision with “ps” significant digits to a higher precision with
“pl” significant digits.

5.1 Arithmetic

Five operations are defined: addition, subtraction, multiplication, division, and remainder. “fp_arith” is
then defined as an executive function which checks for NaN operands, normalizes the operands, and call
an arithmetic operation based on the argument “op”. The operations are declared as a new type:

define_type `arith_op` `arith_op = fpadd | fpsub | fpmul | fpdiv |
fprem `;;

Some arguments to an operation might not be valid arguments depending on the operation. Division by
zero is an example. If arguments to an operation are invalid the operation will return a NaN with an excep-
tion flag. Floating-point addition is defined by the function “fp_add ”. “ fp_add ” takes as arguments
floating-point operands “fp1 ” and “fp2 ”, operands’ precsion “p”, rounding precision “pr ”, quiet NaN
argument “cn ”, trap status “traps ”, rounding mode “mode”, tininess detection flag “tiny ”, accuracy
detection flag “acc ”, and maximum and minimum exponents “emax” and “emin ”:

new_definition (`fp_add`,
“fp_add fp1 fp2 p pr cn traps mode tiny acc emax emin =
(is_infinite fp1 /\ is_infinite fp2 /\ ~(fp_sign fp1 = fp_sign fp2))
 => (NaN(quiet,cn),invalid) |
(is_infinite fp1) => (fp1,no_excep) |
(is_infinite fp2) => (fp2,no_excep) |
((fp_is_zero fp1)/\(fp_is_zero fp2)/\(fp_sign fp1 = fp_sign fp2))
 => (fp1,no_excep) |
round ((fp_value (i_finite fp1) p) real_add
 (fp_value (i_finite fp2) p)) pr traps mode tiny acc emax emin”);;

Floating-point negation changes the arithmetic sign of a floating-point number which is not a NaN:

new_definition (`fp_neg`,
“fp_neg fp =
is_NaN fp => fp |
is_finite fp => (fp_is_pos fp => (finite (1,(SND (i_finite fp)))) |
 finite (0,(SND (i_finite fp)))) |
 (fp_is_pos fp => infinite 1 | infinite 0)”);;

Subtraction is defined in terms of negation and addition:

new_definition (`fp_sub`,
“fp_sub fp1 fp2 p pr cn traps mode tiny acc emax emin =
fp_add fp1 (fp_neg fp2) p pr traps mode tiny acc emax emin”);;

Floating-point multiplication:

new_definition (`fp_mul`,
“fp_mul fp1 fp2 p pr cn traps mode tiny acc emax emin =
((is_infinite fp1 /\ fp_is_zero fp2)\/(fp_is_zero fp1 /\ is_infinite fp2))

32

 p (precis_c emax emin)), overflow_w_inex |
 ((thr real_le r) => finite (Gpos emax), overflow_w_inex |
 infinite 1, overflow_w_inex)”);;

Round to zero:

new_definition(`r_to_zero`,
“r_to_zero r p traps mode tiny acc emax emin =
let thr = (&(b EXP (FST (REP_integer emax) +1))) in
let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in
 (r = &0) => (finite (0,INT 0,\n.0)), no_excep |
 abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
 abs(r) real_lt thr => (finite (round2zero r p (precis_c emax emin))),
 inex r p mode emax emin |
 (overflow_t traps) => finite (round2zero (r/(&(b EXP (alpha emax emin))))
 p (precis_c emax emin)), overflow_w_inex |
 r real_lt &0 => finite (Gneg emax), overflow_w_inex |
 finite (Gpos emax), overflow_w_inex “);;

The function “round ” is the main function defining rounding. It uses the previous functions to define the
rounding operation for all rounding modes and value ranges:

new_definition(`round`,
“round r p traps mode tiny acc emax emin =
 (mode = to_near) => r_to_near r p traps mode tiny acc emax emin |
 (mode = to_pos_inf) => r_to_pinf r p traps mode tiny acc emax emin |
 (mode = to_neg_inf) => r_to_ninf r p traps mode tiny acc emax emin |
 r_to_zero r p traps mode tiny acc emax emin “);;

5 Operations
In accordance with the IEEE-854 standard,

... each operation shall be performed as if it first produced an intermediate result correct to infinite
precision and with unbound range, and then coerced this intermediate result to fit in the destination’s
precision. [6, section 5, page 10]

Infinite precision for a floating-point operation is represented in the HOL system by the real numbers.
When an operation is to be performed where the argument or arguments are finite floating-point numbers,
the arguments are converted to real numbers, the operation is performed in real number arithmetic and the
result is rounded according to the selected rounding mode. When operations are performed on arguments
of different precisions, the lower precision argument is converted to the higher precision. The function
“p_conv ” define such conversion:

new_definition (`p_conv`,
“p_conv fp ps pl = is_infinite fp => fp |
 is_NaN fp => fp |
finite(fp_sign_d fp,fp_exponent fp,\n.n < ps => fp_digits fp n |
 n < pl => 0 |
 @n.n < b)”);;

 31

The case for is handled by the “denormal ” function. If underflow is detected and the

underflow trap is enabled, denormal will return the infinitely precise result multiplied by and then
rounded with the selected rounding mode:

new_definition(`denormal`,
“denormal r p traps mode tiny acc emax emin =
let round = ((mode = to_near) => round2near |
 (mode = to_pos_inf) => round2pinf |
 (mode = to_neg_inf) => round2ninf |
 round2zero) in
(~(underflow_t traps)\/
((underflow_t traps)/\
(underfl r p traps mode tiny acc emax emin = no_excep))) =>
 ((is_zero (round r p (precis_c emax emin))) =>
 (finite (rsign r,INT 0,\n.0)), underflow_w_inex |
 (finite (round r p (precis_c emax emin))),
 underflow_inexact r p traps mode tiny acc emax emin
) |
 (finite (round (r real_mul (&(b EXP (alpha emax emin)))) p
 (precis_c emax emin)),
 underflow_inexact r p traps mode tiny acc emax emin)”);;

Round to positive infinity:

new_definition(`r_to_pinf`,
“r_to_pinf r p traps mode tiny acc emax emin =
let thr = real_neg (&(b EXP (FST (REP_integer emax) +1))) in
let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in
 (r = &0) => (finite (0,INT 0,\n.0)), no_excep |
 abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
 ((thr real_lt r) /\ (r real_le (fp_value (Gpos emax) p)))
 => (finite (round2pinf r p (precis_c emax emin))),
 inex r p mode emax emin |
 (overflow_t traps) =>finite (round2pinf (r/(&(b EXP (alpha emax emin))))
 p (precis_c emax emin)), overflow_w_inex |
 ((r real_le thr) => finite (Gneg emax), overflow_w_inex |
 infinite 0, overflow_w_inex)”);;

Round to negative infinity:

new_definition(`r_to_ninf`,
“r_to_ninf r p traps mode tiny acc emax emin =
let thr = (&(b EXP (FST (REP_integer emax) +1))) in
let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in
 (r = &0) => (finite (0,INT 0,\n.0)), no_excep |
 abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
 (((fp_value (Gneg emax) p) real_le r) /\ (r real_lt thr))
 => (finite (round2ninf r p (precis_c emax emin))),
 inex r p mode emax emin |
 (overflow_t traps) => finite (round2ninf (r/(&(b EXP (alpha emax emin))))

r b
Emin<

b
α

30

new_definition(`inex`,
“inex r p mode emax emin =
let round = ((mode = to_near) => round2near |
 (mode = to_pos_inf) => round2pinf |
 (mode = to_neg_inf) => round2ninf |
 round2zero) in
(fp_value (round r p (precis_c emax emin)) p = r) => no_excep |
 inexact”);;

When both underflow and inexact are detected the exception flag becomesunderflow_w_inex:

new_definition(`underflow_inexact`,
“underflow_inexact r p traps mode tiny acc emax emin =
((underfl r p traps mode tiny acc emax emin = underflow) /\
(inex r p mode emax emin = inexact)) => underflow_w_inex |
(underfl r p traps mode tiny acc emax emin = underflow)=> underflow |
(inex r p mode emax emin = inexact) => inexact |
 no_excep”);;

If overflow is detected during rounding and the overflow trap handler is enabled the result of the oper-

ation will be the infinitely precise result of the operation divided by and then rounded. The exponent

adjustment is chosen to be approximately and should be divisible by twelve3:

new_definition(`alpha`,
“alpha emax emin =
let app = (3*(FST (REP_integer (emax minus emin)))) in
let q = @n. (48*n) < app /\ app < (48*(n+1)) in
(app - (48*q)) < ((48*(q+1)) - app) => 12*q | 12*(q+1)”);;

new_definition(`r_to_near`,
“r_to_near r p traps mode tiny acc emax emin =
let thr = (&(b EXP (FST (REP_integer emax)))) real_mul
(&b real_sub (real_inv(&(b EXP (p-1)))/&2)) in
let bemin = (real_inv (&(b EXP (SND (REP_integer emin))))) in
 (r = &0) => (finite (0,INT 0,\n.0)), no_excep |
 abs(r) real_lt bemin => denormal r p traps mode tiny acc emax emin |
 abs(r) real_lt thr => (finite (round2near r p (precis_c emax emin))),
 inex r p mode emax emin |
 (overflow_t traps) => finite (round2near (r/(&(b EXP (alpha emax emin))))
 p (precis_c emax emin)), overflow_w_inex |
 infinite (rsign r), overflow_w_inex “);;

3. The definition of “alpha ” is overly restrictive since it gives the exponent adjustment the nearest value to

 which is divisible by 12. If an implementation description uses a different value for the exponent adjust-

ment and a proof of compliance is to be performed, a new value for “alpha ” should be defined consistent with the intended
implementation.

b
α

α 3 Emax Emin–() 4⁄()

3 Emax Emin–() 4⁄()

 29

Round to zero returns the largest magnitude floating-point number with magnitude less than the
magnitude of r:

new_definition(`round2zero`,
“round2zero r p precis =
@fp1.(precis fp1)/\
 (!fp. abs(fp_value fp p) real_le (abs r) ==>
 abs(fp_value fp p) real_le abs(fp_value fp1 p))”);;

The next set of rounding functions is defined for real number arguments with unbound values. The real
number value may be outside the representable range of finite floating-point numbers. When rounding is
performed on unbounded real arguments, the rounding function must check for overflow and return an
overflow exception flag when overflow is detected. The rounding functions will also check for underflow
and inexact, and return the appropriate flag when an exception is detected.

The functions take as arguments a real number, rounding precision, traps status, rounding mode, tini-
ness detection flag, accuracy detection flag, and destination maximum and minimum exponent. They
return a floating point number and an exception flag.

Underflow and inexact detection are handled by separate functions outside the rounding operation.
Overflow is detected inside the rounding function. Also, when the real number to be rounded has magni-

tude less than the rounding is handled by a separate function “denormal ”.
The functions “tininess ”, “ accuracy ”, and “underfl ” are used for underflow detection. The

function “inex ” is used both for underflow and inexact detection:

new_definition(`tininess`,
“tininess r p mode tiny emax emin =
let round = ((mode = to_near) => round2near |
 (mode = to_pos_inf) => round2pinf |
 (mode = to_neg_inf) => round2ninf |
 round2zero) in
~tiny => (~(&0 = r) /\
 abs(r) real_lt (real_inv (&(b EXP (SND (REP_integer emin)))))) |
 (~(&0 = r) /\
 fp_value (round r p (precis_c emax emin)) p real_lt
 (real_inv (&(b EXP (SND (REP_integer emin))))))”);;

new_definition(`accuracy`,
“accuracy r p mode acc emax emin =
let round = ((mode = to_near) => round2near |
 (mode = to_pos_inf) => round2pinf |
 (mode = to_neg_inf) => round2ninf |
 round2zero) in
~acc => ~(fp_value (round r p exp_unbound) p = r) |
 ~(fp_value (round r p (precis_c emax emin)) p = r)”);;

new_definition(`underfl`,
“underfl r p traps mode tiny acc emax emin =
let u = (~(underflow_t traps) =>
 (tininess r p mode tiny emax emin /\ accuracy r p mode acc emax emin) |
 tininess r p mode tiny emax emin) in
 u => underflow | no_excep”);;

b
Emin

28

“round2near r p precis =
 (?fp1.precis fp1 /\
(!fp.(precis fp) /\~(fp_value fp p = fp_value fp1 p) ==>
abs(fp_value fp1 p real_sub r) real_lt abs(fp_value fp p real_sub r))) =>
 (@fp1.precis fp1 /\
(!fp.(precis fp) /\~(fp_value fp p = fp_value fp1 p) ==>
abs(fp_value fp1 p real_sub r) real_lt abs(fp_value fp p real_sub r))) |
 @fp1.(precis fp1) /\
(!fp.(precis fp) ==>
abs(fp_value fp1 p real_sub r) real_le abs(fp_value fp p real_sub r)) /\
 (EVEN ((digits fp1)(p-1)))”);;

Round to near will return a floating-point number with a unique value nearest to the real number, if one
exists. If two floating point numbers have values equally near, round to near will return the one with least
significant digit even. Round to near uses the function “fp_value ” which extracts the value of a floating-
point number returning a real number. The function “fp_value ” is defined by,

new_definition(`fp_value`,
“fp_value (s,Exp,dig) p =
 ((real_neg (& 1)) pow s) real_mul
 ((NEG Exp => (real_inv (&(b EXP (SND (REP_integer Exp))))) |
 (&(b EXP (FST (REP_integer Exp)))))) real_mul
 (frac_sum (\dn.& (dig dn) real_mul (real_inv (&(b EXP dn)))) p)”);;

The value function “fp_value ” depends in turn on the summation function

“ frac_sum Fn m ” = ,

new_prim_rec_definition(`frac_sum`,
“(frac_sum Fn 0 = & 0)/\
(frac_sum Fn (SUC n) =
(Fn n) real_add (frac_sum Fn n))”);;

Round to positive infinity returns the smallest floating-point number greater than r:

new_definition(`round2pinf`,
“round2pinf r p precis =
@fp1.(r real_le (fp_value fp1 p))/\
 (precis fp1)/\
 (!fp.r real_le (fp_value fp p) ==>
 (fp_value fp1 p) real_le (fp_value fp p))”);;

Round to negative infinity returns the largest floating-point number less than r:

new_definition(`round2ninf`,
“round2ninf r p precis =
@fp1.((fp_value fp1 p) real_le r)/\
 (precis fp1)/\
 (!fp. (fp_value fp p) real_le r ==>
 (fp_value fp p) real_le (fp_value fp1 p))”);;

Fn n()
n 0=

m 1–

∑

 27

3 Exceptions and Traps
Operations on floating-point numbers can signal exceptions as a result of performing the operation.

Exceptions are declared as a new type:

define_type `except` `except_type = invalid | div_by_zero |
overflow_w_inex | underflow | underflow_w_inex | inexact |
no_excep`;;

A signaling exception will set a status flag and, if enabled by the user, will invoke an exception han-
dling trap. If exceptions handlers are implemented then each exception should have a user controlled trap
associated with it.

The resulting value on some operations will depend on whether an exception is detected and/or a trap
is enabled. Conditions which will result in exceptions will be defined within the operation’s definition. The
status of the exception traps are defined by the 5-tuple (invalid, div_by_zero, overflow, underflow, inexact).
The following functions extract the status of each of the exception traps:

new_definition(`invalid_t`,
“invalid_t (t1:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t1”);;

new_definition(`div_by_zero_t`,
“div_by_zero_t (t1:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t2”);;

new_definition(`overflow_t`,
“overflow_t (t1:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t3”);;

new_definition(`underflow_t`,
“underflow_t (t1:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t4”);;

new_definition(`inexact_t`,
“inexact_t (t1:bool,t2:bool,t3:bool,t4:bool,t5:bool) = t5”);;

4 Rounding
Rounding will take an infinitely precise numberr, characterized in the HOL system by the real num-

bers, and convert it into a floating-point representation. Four rounding modes are specified in the standard.
The rounding mode is declared as a new type:

define_type `round_m` `round_m = to_near |
to_pos_inf | to_neg_inf | to_zero`;;

The rounding operation is defined by a family of functions to cover all rounding modes and argument
values. The first set of function is defined for values ofr which will generate a finite floating-point repre-
sentation. A function is defined for each of the four rounding modes. These four functions take a real num-
ber, a rounding precision, and a destination precision predicate and return a finite floating-point number.
The real number argument must have value such that it can be represented by a finite floating point for the
given destination precision. Round to near is defined by,

new_definition(`round2near`,

26

|- !z.i_finite (finite z) = z
|- !z.i_infinite (infinite z) = z
|- !z.i_NaN (NaN z) = z

illustrate the action of the inverse functions.
Additional definitions following extract the elements of the arguments for floating point constructors

and identify properties of the argument:

new_definition(`fp_sign_d`,
“fp_sign_d fp = (@n.(n = (FST (i_finite fp)))\/
 (n = (i_infinite fp)))”);;

define_type `fp_sign`
`fp_sign = positive | negative`;;

new_definition(`fp_sign`,
“fp_sign fp = (EVEN (fp_sign_d fp)) => positive | negative”);;

new_definition(`exponent`,
“exponent (s:num,Exp:integer,dig:num -> num) = Exp”);;

new_definition(`digits`,
“digits (s:num,Exp:integer,dig:num -> num) = dig”);;

new_definition(`fp_is_pos`,
“fp_is_pos fp = fp_sign fp = positive”);;

new_definition(`fp_is_neg`,
“fp_is_neg fp = fp_sign fp = negative”);;

new_definition(`fp_is_zero`,
“fp_is_zero fp = (!n.(fp_digits fp)n = 0)”);;

The greatest and least magnitudes for a finite floating point number is given by:

new_definition(`Gpos`,
“Gpos (emax:integer) = (0,emax,(\d:num.b-1))”);;

new_definition(`Gneg`,
“Gneg (emax:integer) = (1,emax,(\d:num.b-1))”);;

new_definition(`Lpos`,
“Lpos p (emin:integer) = (0,emin,\d:num.(d = (p-1)) => 1 | 0)”);;

new_definition(`Lneg`,
“Lneg p (emin:integer) = (1,emin,\d:num.(d = (p-1)) => 1 | 0)”);;

 25

 ((b =10) ==> (5 < p_s)))”;;
“single 24 (INT 127) (neg (INT 127))”;;
“double 24 53 (INT 127) (neg (INT 127)) (INT 1023)
 (neg (INT 1022))”;;

2.1 Floating-point Number Representation

Floating-point numbers are represented in HOL by their meaning: a value, and infinite, and a NaN. A
new type is created to define floating point numbers:

define_type `fp_num`
‘fp_num = finite (num#integer#(num -> num)) |
infinite num |
NaN (NaN_type#num)‘;;

“ finite ”, “ infinite ”, and “NaN” become type constructors that when applied to a triple of type
“: (num#integer#(num -> num)) ”, an element of type “:num”, and a pair of type
“: (NaN_type#num) ”, respectively, will return an element of type “:fp_num ”.

A new type is used in the definition of “fp_num ” above which defines signaling and quiet NaNs:

define_type `NaN_type` `NaN_type = signal | quiet`;;

The following definitions for identifying and manipulating floating-point(fp) numbers are used in the
specification of floating-point operations:

new_definition(`is_finite`,
“is_finite fp = (?X.fp = (finite X))”);;

new_definition(`is_infinite`,
“is_infinite fp = (?X.fp = (infinite X))”);;

new_definition(`is_NaN`,
“is_NaN fp = (?X.fp = (NaN X))”);;

new_definition(`i_finite`,
“i_finite fp = (@X.fp = (finite X))”);;

new_definition(`i_infinite`,
“i_infinite fp = (@X.fp = (infinite X))”);;

new_definition(`i_NaN`,
“i_NaN fp = (@X.fp = (NaN X))”);;

The first three definitions are predicates which returntrue when applied to a finite, infinite, and NaN fp
number, respectively, andfalse otherwise. The last three definitions are the inverse of the respective type
constructors and will return the argument of the constructor when applied to the appropriate fp number.
The theorems,

24

(b =10) ==> ((1 + (2*p_s)) <= p_d)/\
(((INT 8 times emax_s) plus INT 7) below_or_e emax_d)/\
((emin_d below_or_e (INT 8 times emin_s)))”);;

 For extended precision, the following constraints must hold over the base precision:

for

where the subscripts e and b denote the extended and base precision. These constraints are defined by,

new_definition(`extended`,
“extended p_b p_e emax_b emin_b emax_e emin_e =
(((INT 8 times emax_b) plus INT 7) below_or_e emax_e)/\
(emin_e below_or_e (INT 8 times emin_b))/\
(&p_e real_ge ((&1 real_add (&2/(&10))) real_mul (& p_b)))/\
((b=2) ==>
((p_b + ceiling(log 2 (& (FST (REP_integer(emax_b minus emin_b))))))

 <= p_e))”);; 2

A floating-point number of any given precision must have an exponent value within the precision max-
imum and minimum exponent. The digits must be b-radix based.

new_definition(`precis`,
“precis emax emin fp =
(emin below_or_e (exponent fp))/\
((exponent fp) below_or_e emax)/\
(!n.(digits fp)n < b)”);;

An implementation of the IEEE-854 will assign specific values tob, p, , and . These values

must be shown to comply with the restrictions above. For example, for an implementation with single and
double precision with values,

b=2, p_s = 24, Emax_s = 127, Emin_s = -126, p_d = 53, Emax_d = 1023, and Emin_d = -1022

we must show that,

“b=2 ==> (b=2) \/ (b=10)”;;
“(b=2)/\(p_s=24) ==> (((b = 2) ==> (17 < p_s))/\

2. The ceiling function in this definition takes a real number as its argument and returns a natural number. The ceiling func-
tion of “x:real ” is the least positive integer “n:num ” greater than or equal tox. If x is negative, ceiling ofx is zero.log 2 x is the
logarithm base 2 ofx. Arithmetic operators on the real numbers are prefixed byreal as for example in real_add for the binary
infixed addition operation. The operator “&“ takes a natural number and maps it to the reals. The numbers &1, &2, ... are reals
with values 1, 2, ...

Emaxe
8Emaxb

7+≥

Emine
8Eminb

≤

pe 1.2pb≥

b 2= pe pb log 2 Emaxb
Eminb

–()+≥

Emax Emin

 23

2 Floating-point Numbers and Precisions
The four parameters defining a precision,b, p, Emax, andEmin, are defined in the HOL system by

declaringb as a constant and placing constraints on the values ofp, Emax, andEmin. b andp range over
the natural numbers (type ”:num”) andEmax andEmin range over the integers (type ”:integer”). The value
of constantb is either 2 or 10.

new_definition(`b`,
“b = @n.(n=2)\/(n=10)”);;

The formula “@n.(n=2)\/(n=10) ” can be read “chose an n such that n=2 or n=10.” The number

of digitsp is restricted in all precisions by the constraint which is algebraically equivalent to

new_definition(`Sig`,
“Sig p = ((b = 2) ==> (17 < p))/\
 ((b =10) ==> (5 < p))”);;

The constraint is imposed on the values ofEmax, Emin andp by the definition,

new_definition(`single`,

“single pr emax emin = (INT(5*pr) below (emax minus emin))”);; 1

which must be true for single precision as well as all other precisions.

Additional constraints are imposed on the parameters for double, single extended, and double
extended precisions. For double precision:

where the subscriptsd ands denote double and single precision respectively, and is given by the definition,

new_definition(`double`,
“double ps pd emax_s emin_s emax_d emin_d =
(single pd emax_d emin_d)/\
(b = 2) ==> ((4 + (2*p_s)) <= p_d)/\

1. The natural, integer, and real numbers are different types in the HOL system and different operators and relations are
defined on these types. The relations below, below_or_e, minus, plus, and times on the integers have the obvious meaning of less
than, less than or equal, subtraction, addition, and multiplication, respectively. The operator INT takes a natural number and maps
it into an integer number.

b
p 1–

10
5≥

b 2 p 17>,=

b 10 p 5>,=

Emax E– min() p⁄ 5>

b
pd 10b

2ps≥

Emaxd
8Emaxs

7+≥

Emind
8Emins

≤

22

Part 2: Definition in HOL

1 Introduction
This part of the paper presents the definition of the IEEE-854 standard in the HOL system[2].The stan-

dard is formalized using the higher-order logic language available in the system. The HOL system’s logic
is Church’s simple theory of types with polymorphic and definitional extensions. The HOL system is a
general purpose mechanized theorem prover. The system supports both forward and backward proofs. The
forward proof style applies inference rules to existing theorems to obtain new theorems and eventually the
desired theorem. Backward or goal oriented proofs start with the goal to be proven. Tactics are applied to
the goal and subgoals until the goal is decomposed into simpler existing theorems or axioms.

By defining the IEEE-854 standard in the HOL system, it is possible to show that the standard meets
given requirements. Desirable properties of the standard can be formulated in the logic and proofs can be
constructed in the system to show that the formalization of the standard complies with stated properties.

The system basic language includes the natural numbers and boolean type. John Harrison’s reals
library[4] and Elsa Gunter’s integer library[3] are used, respectively, for the definition of the real and inte-
ger types. The real and integer numbers are used as part of the IEEE-854 formalization. In the HOL system

the symbol ? represents , ! represents , and @ is the choice or Hilbert operator. Entries in the HOL
system are represented by the courier (type-writer) font.

Table 29: Floating-point comparison: predicates

fp1 predicate fp2 relation

 predicates
 less than equal greater than unordered

ASCII Fortran Math.

= .EQ. false true false false

?<> .NE. true false true true

> .GT. > false false true false, invalid

>= .GE. false true true false, invalid

< .LT. < true false false false, invalid

<= .LE. true true false false, invalid

? .UN. false false false true

=

≠

≥

≤

∃ ∀

 21

icate holds on the arguments and false otherwise, possibly together with an exception. Tables 28 and 29
describe the relation and predicate implementation options. The predicates in Table 29 are defined in terms
of the relations of Table 28. Note that for Table 28, iffp1 is a NaN andfp1 = fp2 the result of a comparison
is still unordered. That is, a NaN compares unordered with itself.

Table 28: Floating-point comparison: relations

fp1 comp fp2

fp1

sig NaN
quiet
NaN

negative
finite -0 +0

positive
finite -inf +inf

 fp2

sig NaN unor-
dered,
invalid

unor-
dered,
invalid

unor-
dered,
invalid

unor-
dered,
invalid

unor-
dered,
invalid

unor-
dered,
invalid

unor-
dered,
invalid

unor-
dered,
invalid

quiet
NaN

unor-
dered,
invalid

unor-
dered

unor-
dered

unor-
dered

unor-
dered

unor-
dered

unor-
dered

unor-
dered

nega-
tive
finite

unor-
dered,
invalid

unor-
dered

less than
or equal
or
greater
than

greater
than

greater
than

greater
than

less than greater
than

-0 unor-
dered,
invalid

unor-
dered

less than equal equal greater
than

less than greater
than

+0 unor-
dered,
invalid

unor-
dered

less than equal equal greater
than

less than greater
than

posi-
tive
finite

unor-
dered,
invalid

unor-
dered

less than less than less than less than
or equal
or
greater
than

less than greater
than

-inf unor-
dered,
invalid

unor-
dered

greater
than

greater
than

greater
than

greater
than

equal greater
than

+inf unor-
dered,
invalid

unor-
dered

less than less than less than less than less than equal

0≠ 0≠

0≠

0≠

20

5.6 Conversion Between Floating-point and Decimal String

Decimal strings are strings of characters representing decimal numbers. The format of decimal strings
is not covered by IEEE-854. An uninterpreted functionformat is defined which takes the floating-point

value v(fp) and converts it to a decimal string value represented by . The functionvalue
extracts the value of a decimal string.

The function format must have the property when
rounding to nearest and conversions from floating-point numbers to decimal strings are performed such

thatM hasD digits of precision where

5.7 Comparison

For any two arbitrary floating-point numbers, one and only one of the following relations must hold:
“less than”, “equal”, greater than”, or “unordered”. Comparison operations can be implemented in two
possible ways: 1) A comparison will return as a result one of the four relations above; 2) A predicate
defines a specific relation between two floating-point numbers and the comparison returns true if the pred-

Table 26: Decimal string to floating-point conversion

DS to
fp

DS

quiet
NaN

signaling
NaN or
NaN

unrecog-
nizable
string

-0
+0 or

 0
-inf or

-infinity

+inf or
+infinity or

inf or
infinity

value(DS)

 fp
quiet
NaN

signaling
NaN

quiet
NaN,
invalid

-0 +0 -inf +inf round(value(
DS))

Table 27: Floating-point to decimal string conversion

fp to
DS

fp

quiet
NaN

signaling
NaN

-0 +0 -inf +inf finite

 DS
 ‘NaN’ ‘NaN’,

invalid
value(DS)
=0

value(DS)
=0

‘-inf’ or
‘-infinity’

‘inf’ or
‘infinity’

format(v(fp))

M 1× 0
N±±

0≠

round value format v fp()()()() fp=

D
p log10 2() 1+ b 2=

p b 10=



=

 19

5.5 Round Floating-point Number to Integral Value

Conversion from floating-point to integral valued floating-point rounds a floating-point number,
according to the rounding mode, to a floating-point in the same precision with an integer value.

exc3 = IF v(fp1) = v(fp2) THEN inexact = false ELSE inexact = true

Table 24: Integer to floating point conversion

Integer to fp
Integer

-0 +0 or 0 finite

 fp -0 +0 v(fp)=(value(integer))

Table 25: Floating-point to integral valued floating-point

fp1 to fp2

fp1

sig
NaN

quiet
NaN

-0 +0 finite -inf +inf

rounding
mode

near quiet
NaN,
invalid

fp1 -0 +0 v(fp2) =
(if is even

then

else

),exc3

-inf +inf

pos_inf quiet
NaN,
invalid

fp1 -0 +0 v(fp2) = ,
exc3

-inf +inf

neg_inf quiet
NaN,
invalid

fp1 -0 +0 v(fp2) = ,
exc3

-inf +inf

zero quiet
NaN,
invalid

fp1 -0 +0 v(fp2) = (if v(fp1) > 0
then else

), exc3

-inf +inf

0≠

0≠

v fp1()
2 v fp1()×

2

2 v fp1()×
2

v fp1()

v fp1()

v fp1()
v fp1()

18

ger encodings of -0 and +0 is possible then conversion between floating-point and integers shall preserve
the zero sign. When no such encoding exists for integer numbers, conversion of zero should result in +0.

exc3 = IF integer(fp)= value(fp) THEN inexact=false ELSE inexact=true
res_exc4 = undefined, invalid

Table 23: Floating-point to integer conversion

fp1 to Integer

fp1

sig NaN
quiet
NaN

-0 +0 finite -inf +inf

rounding
mode

near quiet
NaN,
invalid
or
res_exc4

fp1 or
res_exc4

-0
or
0

+0
or
0

(if is even
then

,exc3

else

,exc3)

or res_exc4

-inf or
res_exc4

+inf or
res_exc4

pos_inf quiet
NaN,
invalid
or
res_exc4

fp1 or
res_exc4

-0
or
0

+0
or
0

(, exc3)
or res_exc4

-inf or
res_exc4

+inf or
res_exc4

neg_inf quiet
NaN,
invalid
or
res_exc4

fp1 or
res_exc4

-0
or
0

+0
or
0

(, exc3)
or res_exc4

-inf or
res_exc4

+inf or
res_exc4

zero quiet
NaN,
invalid
or
res_exc4

fp1 or
res_exc4

-0
or
0

+0
or
0

(if fp1 > 0 then
, exc3

else , exc3)
or res_exc4

-inf or
res_exc4

+inf or
res_exc4

0≠

v fp1()

2 v fp1()×
2

2 v fp1()×
2

v fp1()

v fp1()

v fp1()
v fp1()

 17

5.3 Floating-point Precision Conversion

Conversion between floating-point numbers of all precisions shall be possible. When converting from
a lower to a higher precision the result will be exact. Conversion from a higher to lower precision may sig-
nal inexact.

5.4 Conversion Between Floating-point and Integer

Standard IEEE-854 specifies that compliant implementations must provide conversion between float-
ing-point and integer number encodings. However, integer encoding is not in the scope of IEEE-854.
When conversion from a floating-point to an integer number precludes a faithful representation, an invalid
exception shall be raised. An exception may arise due to conversion of NaNs, infinities, or on overflow
when the floating point value exceeds the maximum value of the integer encoding. When a representation
does not exists for NaNs or infinities in the integer encoding, or if overflow occurs, the conversion result
represented in table 23 byres_exc4is undefined, invalid.

exc3 exception flag isinexact if the value after conversion is not equal to the floating-point value
before conversion. Conversion from an integer to a floating-point number should always be exact. If inte-

Table 21: Square root

SQR fp1

fp1

sig
NaN

quiet
NaN

-0 +0 finite < 0 finite > 0 -inf +inf

quiet
NaN,
invalid

fp1 -0 +0 quiet
NaN,
invalid

round quiet
NaN,
invalid

+inf

Table 22: Floating-point precision conversions

fp1 to fp2

fp1

sig NaN
quiet
NaN

-0 +0 finite -inf +inf

 fp2
preci-
sion

narrower pre-
cision

quiet
NaN,
invalid

fp1 -0 +0 round
v(fp1)

-inf +inf

wider
precision

quiet
NaN,
invalid

fp1 fp1 fp1 fp1 fp1 fp1

v(fp1)

0≠

16

The reminder operationx REM y is defined by for non-zero values of y, wheren is the
integer nearest tox/y.

When two possible values ofn are equally near tox/y thenn is even. If is zero then
x REM y is +0 for positivex and -0 for negativex regardless of the rounding mode. Infinite arith-
metic is defined in IEEE-854 as the limiting case of real arithmetic. To define the remainder function when

x is finite andy is infinite, the limit is calculated as .

5.2 Square Root

The square root operation is defined for all non negative floating-point numbers. The square root of -0
shall be -0.

Table 20: Floating-point remainder

fp1 REM fp2

fp1

sig
NaN

quiet
NaN

-0 +0 finite -inf +inf

 fp2

sig
NaN

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet NaN, invalid quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN

quiet
NaN,
invalid

fp1\/fp2 fp2 fp2 fp2 fp2 fp2

-0 quiet
NaN,
invalid

fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

quiet NaN, invalid quiet
NaN,
invalid

quiet
NaN,
invalid

+0 quiet
NaN,
invalid

fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

quiet NaN, invalid quiet
NaN,
invalid

quiet
NaN,
invalid

finite quiet
NaN,
invalid

fp1 -0 +0 v(fp1) - (v(fp2)x n)
 n = nearest
integer (v(fp1)/v(fp2))

quiet
NaN,
invalid

quiet
NaN,
invalid

-inf quiet
NaN,
invalid

fp1 fp1 fp1 fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

+inf quiet
NaN,
invalid

fp1 fp1 fp1 fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

x y n×()–

0≠

0≠

x y n×()–

x y n×()–()
y ∞→
lim x=

 15

Table 19: Floating-point division

fp1 div fp2
fp1

sig NaN quiet NaN -0 +0 finite -inf +inf

 fp2

sig NaN quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN

quiet
NaN,
invalid

fp1\/fp2 fp2 fp2 fp2 fp2 fp2

-0 quiet
NaN,
invalid

fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

sign(-fp1)
inf,
div_zero

+inf,
div_zero

-inf,
div_zero

+0 quiet
NaN,
invalid

fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

sign(fp1)
inf,
div_zero

-inf,
div_zero

+inf,
div_zero

finite quiet
NaN,
invalid

fp1 sign(-fp2)
0

sign(fp2)0 round(

v(fp1)
v(fp2))

sign(-fp2)
inf

sign(fp2)
inf

-inf quiet
NaN,
invalid

fp1 +0 -0 sign(-fp1)
0

quiet
NaN,
invalid

quiet
NaN,
invalid

+inf quiet
NaN,
invalid

fp1 -0 +0 sign(fp1)0 quiet
NaN,
invalid

quiet
NaN,
invalid

0≠

0≠ ÷

14

Table 18: Floating-point multiplication

fp1 mul fp2
fp1

sig NaN quiet NaN -0 +0 finite -inf +inf

 fp2

sig NaN quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN

quiet
NaN,
invalid

fp1\/fp2 fp2 fp2 fp2 fp2 fp2

-0 quiet
NaN,
invalid

fp1 +0 -0 sign(-fp1)
0

quiet
NaN,
invalid

quiet
NaN,
invalid

+0 quiet
NaN,
invalid

fp1 -0 +0 sign(fp1)0 quiet
NaN,
invalid

quiet
NaN,
invalid

finite quiet
NaN,
invalid

fp1 sign(-fp2)
0

sign(fp2)0 round(
v(fp1) x
v(fp2))

sign(-fp2)
inf

sign(fp2)
inf

-inf quiet
NaN,
invalid

fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

sign(-fp1)
inf

+inf -inf

+inf quiet
NaN,
invalid

fp1 quiet
NaN,
invalid

quiet
NaN,
invalid

sign(fp1)
inf

-inf +inf

0≠

0≠

 13

v(fp) denotes the value of the finite floating point numberfp andv(fp1)+v(fp2) is the infinitely precise
addition of the values offp1 andfp2.

Floating-point subtraction is defined in terms of floating-point addition. The unary negation operation
“-” will change the algebraic sign of a floating-point number by changing its sign digit. The negation oper-
ation will change the sign of finites and infinities and will leave NaNs unchanged.

Table 16: Floating-point addition

fp1 add fp2
fp1

sig NaN quiet NaN -0 +0 finite -inf +inf

 fp2

sig NaN quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN,
invalid

quiet
NaN

quiet
NaN,
invalid

fp1 \/ fp2 fp2 fp2 fp2 fp2 fp2

-0 quiet
NaN,
invalid

fp1 -0 round(0) fp1 -inf +inf

+0 quiet
NaN,
invalid

fp1 round(0) +0 fp1 -inf +inf

finite quiet
NaN,
invalid

fp1 fp2 fp2 round (
v(fp1)+
v(fp2))

-inf +inf

-inf quiet
NaN,
invalid

fp1 -inf -inf -inf -inf quiet
NaN,
invalid

+inf quiet
NaN,
invalid

fp1 +inf +inf +inf quiet
NaN,
invalid

+inf

Table 17: Floating-point
subtraction

fp1 sub fp2 fp1

 fp2 fp1 add (-fp2)

0≠

0≠

12

In general, when (for rounding to near) the delivered result with exponent

bound will differ from the result with exponent unbound and loss of accuracy shall be detected. Other
rounding modes have different detection thresholds as given in the next table.

5 Operations
Implementations conforming to the IEEE-854 standard must provide the add, subtract, multiply,

divide, square root, remainder, round to floating point integer, conversion between precisions, conversion
between floating point and integer numbers, conversions between floating point numbers and decimal
strings, and compare operations. The arithmetic operations are shown in tabular form for all floating-point
arguments.

5.1 Arithmetic

Table 14: Loss of accuracy detection by denormalization loss

mode

near true false

pos_inf true false

neg_inf true false

zero true false

Table 15: Loss of accuracy
detection by inexact

mode

all (round

r rround()–
1
2
---b

logbr 1 p–()+
>

b
Emin– r b

Emin 1 p–()+
–≤<

0 r<

r b
Emin 1 p–()+

<
b

Emin 1 p–()+
r b

Emin<≤ b
Emin

r≤

r rround()–
1
2
---b

logbr 1 p–()+

 
 > r rround()–

1
2
---b

logbr 1 p–()+

 
 >

rround() r–() b
logbr 1 p–()+

 
 

≥ rround() r–() 0>

r rround()–() 0>
r rround()–() b

logbr 1 p–()+
 
 

≥

rround() r–() b
logbr 1 p–()+

 
 

≥ r rround()–() b
logbr 1 p–()+

 
 

≥

r∀

r) r≠

 11

Loss of accuracy can be detected by denormalization loss or by inexact. Detection of denormalization
loss is defined in IEEE-854 as follows:

A denormalization loss: When the delivered results differs from what would have been computed were
the exponent range unbound.[6, section 7.4, page 15]

An unbound exponent range givesp digits of accuracy regardless of the number’s magnitude. Consider for
example the number

where,

 and

This number, when rounded to near with the exponent range unbound, will result in:

where,

 and

Rounding to near with the exponent range bounded will give:

where,

The loss of accuracy due to rounding with the exponent range bounded is

Table 13: Tininess detection after rounding

mode

near false true false false

pos_inf true true false false

neg_inf false true true false

zero true true true false

b
Emin– r b

Emin–
1
2
---Lneg–≤< 0 r b

Emin 1
2
---Lpos–< < b

Emin 1
2
---Lpos– r b

Emin<≤ b
Emin

r≤

r b
Emin 0.00…0 dp 1– 00…0d2p 1–=

             

p p

dp 1– α 0≠= d2p 1– β 0≠=

b
Emin p 1–()–

d0.00...0dp 1–

d0 α= dp 1– β=

b
Emin0.00...00dp 1–

dp 1– α=

r rround()– β b
Emin 2p 1–()–

×=

10

 Exceptionexc1 depends on whether or not the rounded result is equal to the infinitely precise number.
exc1is inexact if r andround r are not equal, and no exception if they are equal.

Underflow exception,exc2, depends on the detection of tininess, loss of accuracy, and whether the
underflow trap is enabled or disabled. When the underflow trap is disabled, both tininess and loss of accu-
racy must be detected to signal underflow. When the underflow trap is enabled detection of tininess results
in an underflow flag.

Detection of tininess and loss of accuracy is user selectable. Tininess can be detected before
or after rounding.

zero

disabled , inexact , inexact , overflow,

inexact

enabled , inexact , inexact
round(),
overflow, inex-
act

Table 10:exc1 inexact exception flag

mode (roundr) = r (round

all inexact = false inexact = true

Table 11:exc2 underflow exception flag

mode underflow trap disabled underflow trap enabled

all tiny loss_acc = underflow tiny = underflow

Table 12: Tininess detection before
rounding

mode

all true false

Table 9: Positive numbers greater than

mode
Overflow

 trap

Gpos

Gpos r b
Emax

b
1
2
---b

1 p–
– 

 < < b
Emax

b
1
2
---b

1 p–
– 

  r b
Emax 1+

<≤ b
Emax 1+

r≤

Gpos Gpos Gpos

Gpos Gpos r b
α⁄

r) r≠

∧

0 r b
Emin< < b

Emin
r≤

 9

Overflow detection will deliver to the trap handler the infinitely precise result divided by and then

rounded, when the overflow trap handler is implemented and enabled. The exponent adjustment is as
defined in page 4.

Table 8: Positive numbers greater than or

equal to and less than or equal to

mode

all modes normal, exc1

Table 9: Positive numbers greater than

mode
Overflow

 trap

near

disabled , inexact +inf, overflow, inexact +inf, overflow,
inexact

enabled , inexact
round(), overflow,
inexact

round(),
overflow, inex-
act

pos_inf

disabled +inf, overflow, inexact +inf, overflow, inexact +inf, overflow,
inexact

enabled
round(), over-
flow, inexact

round(), overflow,
inexact

round(),
overflow, inex-
act

neg_inf

disabled , inexact , inexact , overflow,

inexact

enabled , inexact , inexact
round(),
overflow, inex-
act

b
Emin

Gpos

b
Emin

r Gpos≤ ≤

b
α

α

Gpos

Gpos r b
Emax

b
1
2
---b

1 p–
– 

 < < b
Emax

b
1
2
---b

1 p–
– 

  r b
Emax 1+

<≤ b
Emax 1+

r≤

Gpos

Gpos r b
α⁄ r b

α⁄

r b
α⁄ r b

α⁄ r b
α⁄

Gpos Gpos Gpos

Gpos Gpos r b
α⁄

8

zero
disabled +0, inexact, underflow +0, inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

Table 7: Positive numbers greater than or equal to and less than

mode
underflow

trap

near

disabled or
(enabled, no
underflow)

denormal,
exc1,exc2

, exc1, exc2 , exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

pos_inf

disabled or
(enabled, no
underflow)

denormal,
exc1,exc2

, exc1, exc2 , exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

neg_inf

disabled or
(enabled, no
underflow)

denormal,
exc1,exc2

, exc1, exc2 , exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

zero

disabled or
(enabled, no
underflow)

denormal,
exc1,exc2

, exc1, exc2 , exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

Table 6: Positive numbers less than

mode underflow trap

Lpos

0 r< 1
2
---Lpos≤ 1

2
---Lpos r Lpos< <

r b
α× r b

α×

Lpos b
Emin

Lpos r b
Emin≤ ≤ Lpos– b

Emin
Lpos– r b

Emin 1
2
---Lpos–< < b

Emin 1
2
---Lpos– r b

Emin<≤

b
Emin

Lpos– b
Emin

r b
α× r b

α× r b
α×

b
Emin

b
Emin

r b
α× r b

α× r b
α×

b
Emin

Lpos– b
Emin

Lpos–

r b
α× r b

α× r b
α×

b
Emin

Lpos– b
Emin

Lpos–

r b
α× r b

α× r b
α×

 7

sign(fp)is the algebraic sign of the floating point number fp. v(fp) denotes the value of the finite float-
ing point numberfp andv(fp1)+v(fp2)is the infinitely precise addition of the values offp1 andfp2.

zero disabled -0, inexact, underflow -0, inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

Table 5: Zero

mode
sign(fp1) sign(fp2)

v(fp1)+v(fp2)=0

near -0 +0 +0 sign(fp)0 sign(-fp)0

pos_inf -0 +0 +0 sign(fp)0 sign(-fp)0

neg_inf -0 +0 -0 sign(fp)0 sign(-fp)0

zero -0 +0 +0 sign(fp)0 sign(-fp)0

Table 6: Positive numbers less than

mode underflow trap

near
disabled +0, inexact, underflow , inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

pos_inf
disabled , inexact, underflow , inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

neg_inf
disabled +0, inexact, underflow +0, inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

Table 4: Negative numbers greater than

mode underflow trap

Lneg

Lneg r
1
2
---Lneg< < 1

2
---Lneg r 0<≤

r b
α× r b

α×

0–() 0–()+ +0() +0()+
≠

+0 fp× 0 fp×–

Lpos

0 r< 1
2
---Lpos≤ 1

2
---Lpos r Lpos< <

Lpos

r b
α× r b

α×

Lpos Lpos

r b
α× r b

α×

r b
α× r b

α×

6

neg_inf

disabled or
(enabled, no
underflow)

, inexact, exc2 , inexact, exc2 denormal, exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

zero

disabled or
(enabled, no
underflow)

,

inexact,exc2

, inexact,

exc2

denormal, exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

Table 4: Negative numbers greater than

mode underflow trap

near disabled , inexact, underflow -0, inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

pos_inf disabled -0, inexact, underflow -0, inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

neg_inf disabled , inexact, underflow , inexact, underflow

enabled
round(),
inexact, underflow

round(),
inexact, underflow

Table 3: Negative numbers greater than and less than or equal to

mode
underflow

trap

b
Emin– Lneg

b
Emin– r b

Emin–
1
2
---Lneg–≤<

b
Emin–

1
2
---Lneg– r<

r b
Emin– Lneg–<

b
Emin– Lneg– r Lneg≤ ≤

b
Emin– b

Emin–

r b
α× r b

α× r b
α×

b
Emin– Lneg– b

Emin– Lneg–

r b
α× r b

α× r b
α×

Lneg

Lneg r
1
2
---Lneg< < 1

2
---Lneg r 0<≤

Lneg

r b
α× r b

α×

r b
α× r b

α×

Lneg Lneg

r b
α× r b

α×

 5

When the value resulting from a rounding operation is not equal to the infinitely precise num-
ber the inexact exception is signaled. The inexact flag is represented byexc1 and is defined in
table 10.

Underflow detection when the underflow trap handler is implemented and enabled will deliver to the

trap handler the infinitely precise result of the operation multiplied by and then rounded. The exponent

adjustment is the same as used for overflow.exc2 is the underflow exception flag defined in table 11.
Underflow detection depends on the rounding result, detection scheme selected by the user, and/or traps
enabled.

Table 2: Negative numbers greater than or

equal to and less than or equal to

mode

all modes normal, exc1

Table 3: Negative numbers greater than and less than or equal to

mode
underflow

trap

near

disabled or
(enabled, no
underflow)

, inexact, exc2 , inexact,

exc2

denormal, exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

pos_inf

disabled or
(enabled, no
underflow)

,

inexact, exc2

,

inexact, exc2

denormal, exc1, exc2

enabled and
underflow
detected

round(),
inexact, underflow

round(),
inexact, underflow

round(),
inexact, underflow

Gneg b
Emin–

Gneg r b
Emin–≤ ≤

b
α

α

b
Emin– Lneg

b
Emin– r b

Emin–
1
2
---Lneg–≤<

b
Emin–

1
2
---Lneg– r<

r b
Emin– Lneg–<

b
Emin– Lneg– r Lneg≤ ≤

b
Emin– b

Emin– Lneg–

r b
α× r b

α× r b
α×

b
Emin– Lneg– b

Emin– Lneg–

r b
α× r b

α× r b
α×

4

Round to near returns the floating-point number with value nearest to the infinitely precise number. If
two floating-point number values are equally near, round to near returns the one with least significant digit
even. Round to positive infinity returns a floating-point number with the smallest value which is greater
than the infinitely precise number. Round to negative infinity returns a floating-point number with the
greatest value less than the infinitely precise number. Round to zero returns a floating-point number with
the largest magnitude which is less than the infinitely precise number.

The following tables summarize the interpretation of the standard for all value ranges of real numbers

to be rounded. , , , and represent, respectively, the greatest negative, greatest posi-

tive, least negative, and least positive finite floating point number representable in a given precision. The
tables give the result and exceptions, if any, of the rounding operation for a given infinite precision number
and a rounding mode. Three possible exceptions can be signaled by the rounding operation: underflow,
overflow, and inexact.

Overflow detection when the overflow trap handler is implemented and enabled will deliver to the trap

handler the infinitely precise result of the operation divided by and then rounded. The exponent adjust-

ment is chosen to be approximately and should be divisible by twelve.

Table 1: Negative numbers less than

mode
Overflow

 trap

near

disabled -inf, overflow,
inexact

-inf, overflow, inexact , inexact

enabled
round(),
overflow, inexact

round(), overflow,
inexact

, inexact

pos_inf

disabled , overflow,

inexact

, inexact , inexact

enabled
round(),
overflow, inexact

, inexact , inexact

neg_inf

disabled -inf, overflow,
inexact

-inf, overflow, inexact -inf, overflow, inexact

enabled
round(),
overflow, inexact

round(), overflow,
inexact

round(),
overflow, inexact

zero

disabled , overflow,

inexact

, inexact , inexact

enabled
round(),
overflow, inexact

, inexact , inexact

Gneg Gpos Lneg Lpos

b
α

α 3 Emax Emin–() 4⁄()

Gneg

r b
Emax 1+

–≤ b
Emax 1+

r<– b
Emax– b

1
2
---b

1 p–
– 

 ≤ b
Emax

b
1
2
---b

1 p–
– 

 – r Gneg< <

Gneg

r b
α⁄ r b

α⁄ Gneg

Gneg Gneg Gneg

r b
α⁄ Gneg Gneg

r b
α⁄ r b

α⁄ r b
α⁄

Gneg Gneg Gneg

r b
α⁄ Gneg Gneg

 3

2. Two infinities, and
3. At least one signaling NaN
4. At least one quiet NaN

3 Exceptions and Traps
Operations on floating-point numbers, defined in succeeding sections, can signal exceptions as a result

of performing the operation. The generation of exceptions will depend on operands, results, and operation
conditions. Five exceptions are signaled when detected:

Invalid operation

Division by zero

Overflow

Underflow

Inexact

An exception will set a status flag and, if enabled by the user, will invoke an exception handling trap. If
exception handlers are implemented then each exception should have a user controlled trap associated with
it.

The resulting value on some operations will depend on whether an exception is detected and a trap is
enabled. Conditions which will result in exceptions will be defined within the operation’s definition.

4 Rounding
Floating-point numbers are intended to be a finite approximation of the real numbers. Rounding is

defined in the IEEE-854 standard thus,

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit the destina-
tion’s precision while signaling the inexact exception (see 7.5). [6, section 4, page 9]

Four rounding modes are specified in the standard:

An implementation of this standard shall provide round to nearest as the default rounding mode.[...]
An implementation of this standard shall also provide three user-selectable directed rounding modes:

round towards + , round towards , and round towards 0. [6, section 4.1, page 9]

In addition, depending on the magnitude of the number to be rounded and the rounding mode, rounding
can produce infinite floating-points while signaling other exceptions:

The rounding modes may affect the signs of zero sums (see 6.3), and do affect the threshold beyond
which overflow (see 7.3) and underflow (see 7.4) may be signaled. [6, section 4, page 9]

∞+ ∞–

∞ ∞–

2

subnormal number is a nonzero valued number whose magnitude is less than the base raised to the preci-
sion’s minimum exponent. IEEE-854 defines four precision: single, double, single extended, and double
extended. Each precision is defined by the following parameters:

= the radix or base

= the number of base-b digits in the significand

= the maximum exponent

= the minimum exponent

For all precisions, the parameters are subjected to the following constraints:

b shall be either 2 or 10 and shall be the same for all supported precisions

 shall exceed 5 and should exceed 10

Additional constraints are imposed on the parameters for double, single
extended, and double extended precisions. For double precision:

where the subscriptsd ands denote double and single precisions respectively. For extended precision, the
following constraints must hold over the base precision:

for

where the subscripteand b denote the extended and base precisions.
Thus, each precision allows the representation of just the following

entities:

1. Numbers of the form where

s = a natural number defining the algebraic sign

E = any integer between and , inclusive

= a base-b digit

b

p

Emax

Emin

Emax E– min() p⁄

b
p 1–

10
5≥

b
pd 10b

2ps≥
Emaxd

8Emaxs
7+≥

Emind
8Emins

≤

Emaxe
8Emaxb

7+≥

Emine
8Eminb

≤

pe 1.2pb≥

b 2= pe pb log 2 Emaxb
Eminb

–()+≥

1–
s〈 〉b

E
d0.d1d2…dp 1–()

Emin Emax

di 0 di b 1–()≤ ≤)

 1

 Interpretation of IEEE-854 Floating-Point Standard
and Definition in the HOL system

 Victor A. Carreño
 NASA Langley Research Center

Hampton, VA 23681-0001
v.a.carreno@larc.nasa.gov

The ANSI/IEEE Standard 854-1987 for floating-point arithmetic is interpreted by
converting the lexical descriptions in the standard into mathematical conditional
descriptions organized in tables. The standard is represented in higher-order
logic within the framework of the HOL system. The paper is divided in two parts
with the first part the interpretation and the second part the description in HOL.

The objective of this work is to provide a representation of the IEEE-854[6] standard in a formal logic
system against which implementations can be verified using deductive reasoning. Before the standard
could be represented in the formal system it was necessary to extract the meaning of the standard for
numerous conditions and cases. Hence, the interpretation of the standard became part of the effort. Paul
Miner provided valuable discussions to aid in the standard interpretation and worked in a similar effort to
specify the IEEE-854 standard in the PVS system[7].

Previous efforts to represent a floating point arithmetic standard in a formal language include the par-
tial formalization of the ANSI/IEEE-754-1985[5] standard in the Z language by Geoff Barret[1] and in the
HOL system by Jing Pang[8]. IEEE-854 is a generalization of IEEE-754. IEEE-854 does not specify
encoding formats for floating-point numbers and permits the representation of floating-point numbers in
the binary and decimal systems.

The interpretation of the standard is not intended to replace the standard but rather aid in its under-
standing. Although the standard has been reviewed meticulously to get a full understanding of its meaning,
errors probably exist in the interpretation. Any discrepancies between the interpretation and the standard
should be considered an interpretation error and the standard should take precedence.

Part 1: Interpretation

1 Introduction
This part of the paper covers the interpretation of ANSI/IEEE Standard 854-1987. The interpretation

consists of the definition of 29 tables which address the cases found during floating-point rounding and
arithmetic operations. Operations on infinity, zero, and symbolic entries, as well as exceptions and traps
are incorporated directly in the definition of each operation rather than in separate sections.

2 Floating-point Numbers and Precisions
This section contains a brief definition of floating-point numbers and floating-point precisions. A float-

ing-point number is a digit string characterized by three components: a sign digit, a signed exponent, and a
significand. A floating-point number can have three meanings: 1. a value; 2. an infinite; and 3. not a num-
ber (NaN). Values, infinities, and NaNs are further divided into classes. A value could be a normal number,
subnormal number, or zero. An infinite could be positive or negative. NaNs could be signaling or quiet. A

